![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
双目标优化的RDF图分割算法
点击次数:
发表时间:2022-10-10
发表刊物:计算机工程与应用
所属单位:软件学院
卷号:53
期号:21
页面范围:24-31,53
ISSN号:1002-8331
摘要:Distributed storage is a more effective method for the mass data storage. And, the data partitioning is the premise of distributed storage. In facing of the growing semantic web data, RDF Graph Partitioning algorithm is proposed by Double Objective Optimization(RGPDOO). RGPDOO fuses edge cut and load balancing together to get an objective function. According to this objective function, RGPDOO achieves static and dynamic partitioning of RDF graph. For the static partitioning, an initial partitionis executed to divide the node into three kinds:kernel nodes, boundary nodes and freedom nodes. And then, the boundary and freedom nodes are distributed to apartition with the max gain of objective function. For the dynamic partitioning, the insertion and deletion solution of triples are given by the objective function. And, RGPDOO will execute a dynamic adjustment at a certain time interval according to the balance and tightness of partitioning subgraph to satisfy the partitioning object. Finally, the algorithm is tested on synthetic and real datasets in comparison with several general graph partitioning algorithms. The experimental results show that RGPDOO is more suitable for RDF graph partitioning.
备注:新增回溯数据