![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
自适应窗口滑动的物联网数据流典型相关分析
点击次数:
发表时间:2022-10-06
发表刊物:大连民族学院学报
期号:3
页面范围:310-314
ISSN号:1009-315X
摘要:Traditional algorithm for canonical correlation analysis of data streams does not consid-er the dynamic rate change of data streams, and can not be applied to the actual situation of the Internet of Things ( IoT) . To solve this problem, in this paper we propose an adaptive window slide based canonical correlation analysis algorithm of data streams. Depending on the rate chan-ges, we design an adaptive window slide strategy and dynamically adjust the sliding window. Simulation results show that the proposed algorithm can guarantee real-time, accurate and effi-cient canonical correlation analysis of data streams of IoT.
备注:新增回溯数据