个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
一种混杂的多核估计数据填充方法
点击次数:
发表时间:2022-10-04
发表刊物:小型微型计算机系统
期号:7
页面范围:1523-1527
ISSN号:1000-1220
摘要:Data imputation is an important issue in data processing and analysis which has serious impact on the results of data mining and learning.Most of the existing algorithms are either for the same type attributes or difficult to determine the parameters.Aiming at these problems,the paper proposes a multi-kernels function based algorithm to fill mixed attributes data.In order to reduce interference and computation,denoising deep belief network with rectified linear units model is developed for feature extraction from incomplete data and clustering.Specially,to reduce the times of iteration,partial-distance strategy is used for missing values initialization so that results can be rapid convergence and more accurate.After calculating the probability density function about missing variable and complete variable,an estimator which is easy to determine parameters is constructed for missing value prediction.Through the experiment results,the algorithm can reduce the complexity of determining parameters and iteration times,at the same time ensure accuracy.
备注:新增回溯数据