![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
A nodes scheduling model based on Markov chain prediction for big streaming data analysis
点击次数:
论文类型:期刊论文
发表时间:2015-06-01
发表刊物:INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS
收录刊物:SCIE、EI、Scopus
卷号:28
期号:9
页面范围:1610-1619
ISSN号:1074-5351
关键字:big streaming data; cloud computing; Markov chain
摘要:Streaming data analysis is an important part of big data processing. However, streaming data is difficult to be analyzed and processed in real time because of the rapid data arriving speed and huge size of data set in stream model. The paper proposes a nodes scheduling model based on Markov chain prediction for analyzing big streaming data in real time by following three steps: (i) construct data state transition graph using Markov chain to predict the varying trend of big streaming data; (ii) choose appropriate cloud computing nodes to process big streaming data depending on the predicted result of the data state transition graph; and (iii) assign big streaming data to these computing nodes using the load balancing theory, which ensures that all subtasks are accomplished synchronously. Experiments demonstrate that the proposed scheduling algorithm can fast process big streaming data effectively. Copyright (c) 2014 John Wiley & Sons, Ltd.