eYspU0Lg0Ck5x3BYtD5djaqZuqxbtgdii5Aooq5171SB77DpDD9LBFESbuYb
Current position: Home >> Scientific Research >> Paper Publications

An Energy Conservation Algorithm for Nonlinear Dynamic Equation

Release Time:2019-03-09  Hits:

Indexed by: Journal Article

Date of Publication: 2012-01-01

Journal: JOURNAL OF APPLIED MATHEMATICS

Included Journals: Scopus、SCIE

Volume: 2012

ISSN: 1110-757X

Abstract: An energy conservation algorithm for numerically solving nonlinear multidegree-of-freedom (MDOF) dynamic equations is proposed. Firstly, by Taylor expansion and Duhamel integration, an integral iteration formula for numerically solving the nonlinear problems can be achieved. However, this formula still includes a parameter that is to be determined. Secondly, through some mathematical manipulations, the original dynamical equation can be further converted into an energy conservation equation which can then be used to determine the unknown parameter. Finally, an accurate numerical result for the nonlinear problem is achieved by substituting this parameter into the integral iteration formula. Several examples are used to compare the current method with the well-known Runge-Kutta method. They all show that the energy conservation algorithm introduced in this study can eliminate algorithm damping inherent in the Runge-Kutta algorithm and also has better stability for large integral steps.

Prev One:考虑汽车车身涂装工艺影响的非平衡胶接接头强度研究

Next One:Modeling of frequency responses for arbitrary earphone designs