徐斌

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 工程抗震研究所副所长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水工结构工程. 防灾减灾工程及防护工程. 岩土工程

办公地点:辽宁省大连市高新园区大连理工大学四号实验楼101

联系方式:xubin@dlut.edu.cn

电子邮箱:xubin@dlut.edu.cn

扫描关注

论文成果

当前位置: 徐斌 >> 科学研究 >> 论文成果

Stochastic seismic performance assessment of high CFRDs based on generalized probability density evolution method

点击次数:

论文类型:期刊论文

发表时间:2018-05-01

发表刊物:COMPUTERS AND GEOTECHNICS

收录刊物:SCIE、EI

卷号:97

页面范围:233-245

ISSN号:0266-352X

关键字:High CFRDs; Seismic performance; GPDEM; Assessment; Stochastic earthquake responses; Probability

摘要:Determining the failure probabilities of high concrete-faced rockfill dams (CFRDs) is an important component of seismic performance assessment, considering the randomness of earthquake ground motions. In this paper, a new efficient methodology that couples the recently developed generalized probability density evolution method (GPDEM) with the spectral representation-random function method is proposed to evaluate the seismic performance of high CFRDs from a stochastic perspective. A set of representative acceleration time histories of non stationary earthquake ground motions with complete probability are generated based on an evolutionary power spectral density model through an iterative correction to produce a good fit between the average response spectrum and the code spectrum in China's hydraulic structure seismic code. Then, a series of deterministic dynamic calculations for a 200-m CFRD based on a generalized plasticity model modified for rockfills and a generalized plasticity interface model are performed to solve the GPDEM equation. A new face-slab damage index that considers double physical parameters (demand capacity ratio and cumulative overstress duration based on stress) is presented and its probability information is determined by constructing a virtual random process. Finally, probability density functions and cumulative distribution functions are obtained under two seismic levels by considering three performance indices corresponding to deformation, stability of dam slope and safety of face-slabs. The failure probability of different failure grades demonstrates that this new method has a good applicability to seismic performance assessment of high CFRDs.