徐斌

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 工程抗震研究所副所长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水工结构工程. 防灾减灾工程及防护工程. 岩土工程

办公地点:辽宁省大连市高新园区大连理工大学四号实验楼101

联系方式:xubin@dlut.edu.cn

电子邮箱:xubin@dlut.edu.cn

扫描关注

论文成果

当前位置: 徐斌 >> 科学研究 >> 论文成果

Seismic performance evaluation of high CFRD slopes subjected to near-fault ground motions based on generalized probability density evolution method

点击次数:

论文类型:期刊论文

发表时间:2018-11-28

发表刊物:ENGINEERING GEOLOGY

收录刊物:SCIE、Scopus

卷号:246

页面范围:391-401

ISSN号:0013-7952

关键字:High CFRD slopes; Seismic performance; Near-fault earthquakes; GPDEM; Stochastic seismic responses

摘要:This research mainly addresses evaluating the seismic reliability and analyzing the random dynamic response of high concrete-faced rockfill dam (CFRD) slopes suffering from the near-fault earthquakes by establishing a novel method of generating the representative acceleration time histories coupled with the recently proposed generalized probability density evolution method (GPDEM). A probability evaluation is performed after generating two groups of near-fault ground motions, pulse-like and non-pulse-like earthquakes, coupling a series of statistical stochastic parameters with the spectral representation-random function method. A 242-m-high CFRD is selected as an example for finite element stochastic dynamic time series analysis, and second-order statistical values (including mean and standard deviation) and probability information of three indices the safety factor, the cumulative time of safety factor <= 1.0 (F-s <= 1.0) and the maximum cumulative slippage of the dam slopes are determined, respectively. The effective non-stationary near-fault earthquakes will be adopted to determine the stochastic earthquake loading for the dynamic response evaluation of dam slopes. The statistical and probabilistic results demonstrate that the seismic characteristics make a great difference to the seismic response of slope stability as well as the pulse properties. The stochastic near-fault earthquakes combined with the GPDEM can evaluate seismic performance and reliability effectively from the perspective of randomness, and the failure probability can be obtained directly.