Hits:
Indexed by:期刊论文
Date of Publication:2016-04-22
Journal:CHEMICAL ENGINEERING SCIENCE
Included Journals:SCIE、EI、Scopus
Volume:144
Page Number:135-143
ISSN No.:0009-2509
Key Words:Hydrate; Depressurization range; Depressurization rate; Dissociation; Magnetic resonance imaging
Abstract:Depressurization is considered to be the most promising method for exploitation of natural gas hydrate. To analyze the characteristics of hydrate dissociation during depressurization, methane hydrate (MH) dissociation was performed at different depressurizing ranges and rates, and the hydrate dissociation process was directly observed using magnetic resonance imaging (MRI). The experimental results indicate that with increased depressurizing rate from 0.01 MPa/min to 0.1 MPa/min, the average dissociation rate increases for a given depressurizing range. Meanwhile, with an increase in depressurizing range from 0.3 MPa to 1.1 MPa, the average dissociation rate increases for a given depressurizing rate. Moreover, the hydrate dissociation process can be divided into two main stages: hydrate saturation remains constant with little fluctuation for several minutes after back-pressure decreases, and then the hydrate dissociates continuously until dissociation completes. In addition, excessively high depressurizing range and rate result in hydrate reformation and ice generation, which slow the rate of hydrate dissociation. Furthermore, it was also determined that MH reformation and ice generation always occur at the higher depressurizing range and rate due to insufficient heat transfer. (C) 2016 Elsevier Ltd. All rights reserved.