个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:材料科学与工程学院
学科:材料表面工程
电子邮箱:ypli@dlut.edu.cn
Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops.
点击次数:
论文类型:期刊论文
发表时间:2018-01-01
发表刊物:Langmuir : the ACS journal of surfaces and colloids
收录刊物:SCIE
卷号:34
期号:20
页面范围:5871-5879
ISSN号:1520-5827
摘要:Water drops impacting windshields of high-speed trains and aircraft as well as blades in steam turbine power generators obliquely and at high speeds are difficult to repel. Impacting drops penetrate the void regions of nanotextured and microtextured superhydrophobic coatings, with this pinning resulting in the loss of drop mobility. In order to repel high-speed water drops, we nanotextured polymer surfaces with nanowire bundles separated from their neighbors by microscale void regions, with the nanowires in a bundle separated from their neighbors by nanoscale void regions. Water drops with speeds below a critical speed rebound completely. Water drops with speeds exceeding a critical speed rebound partially, but residual droplets that begin to be pinned undergo a spontaneous dewetting process and slide off. The natural oscillations of residual droplets drive this dewetting process in the interbundle void regions, resulting in a transition from the sticky Wenzel state to the slippery Cassie state without external stimuli.