Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
张明媛

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Title : 建设管理系 系主任
Gender:Female
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:Department of Construction Management
Discipline:Project Management
Business Address:综合实验4号楼509室
E-Mail:myzhang@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Assessment of Construction Workers' Labor Intensity Based on Wearable Smartphone System

Hits : Praise

Indexed by:期刊论文

Date of Publication:2019-07-01

Journal:JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT

Included Journals:SCIE、SSCI、EI

Volume:145

Issue:7

Page Number:04019039

ISSN No.:0733-9364

Key Words:Construction safety; Labor intensity; Smartphone sensors; Machine learning; Construction management

Abstract:Construction jobs are more labor intensive than other industrial jobs. Safety problems caused by overworked bodies are common, and the supervision of construction workers is always flawed. In China, piecework has long been the common way to evaluate workers' workloads, because it is always inconvenient to obtain direct indicators. To improve this situation, this paper proposes a method based on smartphone sensor acquisition and the concept of labor intensity to evaluate construction workers' workloads. A sensor application based on the smartphone platform was created to effectively measure labor intensity so that the application could track construction workers' movement data in an unobtrusive way. Moreover, preprocessing and a machine learning algorithm were used to classify 25 groups of experimental data. Then, the accuracy of the method was tested. It was shown that not only did the application meet the portability requirement, but its output also satisfied the accuracy requirement for supervising construction workers' activity. The research presented in this paper can help construction organizations promote the intelligent management level of monitoring workers' activity in real time and evaluating the workers' whole-day workload.