pYH8jYZUPbEwPp3D5VCEUBIix7jiR7JD90sEXAlvDDwkBC7yXixMZpuG1GjF
Current position: Home >> Scientific Research >> Paper Publications

基于物种的自适应多模态粒子群优化算法

Release Time:2019-03-11  Hits:

Indexed by: Journal Article

Date of Publication: 2011-05-04

Journal: 山东大学学报(理学版)

Included Journals: CSCD、ISTIC、PKU

Volume: 46

Issue: 5

Page Number: 91-96,122

ISSN: 1671-9352

Key Words: 多模态函数;粒子群;小生境技术;优化算法

Abstract: 通过对粒子群优化问题、小生境技术和多模态粒子群优化算法的深入研究,提出了一种自适应的多模态粒子群优化算法--ASPSO(adaptively species-based particle swarm optimization).对ASPSO算法进行了综合测试,并与经典的多模态粒子群优化算法ANPSO和SPSO进行了比较.实验表明,ASPSO在处理低维测试函数与ANPSO和SPSO具有同样高的成功率和峰值覆盖率,并且ASPSO在处理高维复杂测试函数时,表现出的性能比其他已经存在的多模态粒子群优化算法更好.

Prev One:Practice of improving service science cultivation mode oriented to service industry collaboration in China

Next One:Momentum Particle Swarm Optimization for Molecular Docking