个人信息Personal Information
副教授
硕士生导师
任职 : 功能弹性体材料课题组组长
性别:男
毕业院校:中科院长春应化所
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理. 凝聚态物理
办公地点:化工实验楼A303
联系方式:0412-84986101,13842631065(微信同步)
电子邮箱:zfzhao@dlut.edu.cn
Fabrication of Amphiphilic Hot-Melt Pressure Sensitive Adhesives for Transdermal Drug Delivery
点击次数:
论文类型:期刊论文
发表时间:2012-05-01
发表刊物:JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY
收录刊物:SCIE、EI
卷号:26
期号:8-9
页面范围:1109-1122
ISSN号:0169-4243
关键字:Hot-melt pressure sensitive adhesives; amphiphilic structures; in vitro drug release; adhesive performance
摘要:Styrene-isoprene-styrene (SIS) copolymer and tackifier resins can be utilized to prepare hot-melt pressure sensitive adhesives (HMPSAs) for the transdermal delivery of high lipophilic drugs. To meet the requirement of transdermal delivery of Chinese medicine (containing different ingredients including lipophilic, amphiphilic and hydrophilic drugs), amphiphilic HMPSAs were developed by melt-blending HMPSAs, poly(ethyl acrylate-co-methyl methacrylate-co-trimethylammonioethyl methacrylate chloride) (RLPO) and polyethylene glycol 2000 (PEG2000). Their morphological structures and miscibility were characterized with phase microscopy and differential scanning calorimetry. Their 180 degrees peel strength and holding power were measured for their adhesive performances. In vitro drug release experiments were carried out using a modified Franz type horizontal diffusion cells, in which three ingredients of gardenia fruit (oleanic acid, luteolin and geniposide) were chosen as representatives of lipophilic, amphiphilic and hydrophilic drugs. It was found that amphiphilic phase structures were developed with the addition of RLPO and PEG2000. As the SIS/RLPO ratio was 1:1 similar to 1:2, the HMPSAs had miscible and amphiphilic phase structures. Drug release results showed that hydrophilic drugs could be released due to the existence of RLPO and PEG2000. Its release rate was rapidly enhanced with the increment of RLPO and PEG2000. Meanwhile, the release behavior of lipophilic and amphiphilic drugs and adhesive performance of HMPSAs were preserved in the experiment range. It was proposed that the addition of RLPO and PEG2000 did not destroy phase structures of SIS and tackifier, which insured appropriate adhesive performance and the amphiphilic polymer skeleton of SIS/RLPO/PEG2000 as release channels of various drugs. (C) Koninklijke Brill NV, Leiden, 2012