Hits:
Indexed by:期刊论文
Date of Publication:2016-10-01
Journal:SYNTHETIC METALS
Included Journals:SCIE、EI、Scopus
Volume:220
Page Number:448-454
ISSN No.:0379-6779
Key Words:Isoindigo; Small molecules solar cells; Narrow band gap; Bulk heterojunction; Solution-processed
Abstract:Isoindigo, one of the latest reported amide-based electron-accepting units, was introduced into two new D-pi-A-pi-D typed organic small molecules with triphenylamine as electron-donating unit for organic solar cells. Both (TPAEB)(2)iI and (TPACB)(2)iI possess narrow band gaps of 1.57 and 1.71 eV, respectively. Notably, (TPACB)(2)iI with 2-phenylacrylonitrile as pi-bridge exhibited a high open-circuit voltage of 1.06 V and an improved power conversion efficiency of 3.57%, which is the best performance for isoindigo-triphenylandne based solution-processed organic photovoltaic devices so far. The high open-circuit voltage is primarily attributed to its higher electrochemical oxidation potential by molecular design. The relatively higher photovoltaic performance of (TPACB)(2)iI-based device relative to (TPAEB)(2)iI is shown to originate from the reasonably higher hole-transporting capacity, more optimized active layer morphology and higher degree of crystallinity. These results indicate that isoindigo-based small molecules are a kirid of promising photovoltaic materials. (C) 2016 Elsevier B.V. All rights reserved.