郭艳红
开通时间:..
最后更新时间:..
点击次数:
论文类型:期刊论文
发表时间:2008-01-15
发表刊物:计算机应用研究
收录刊物:PKU、ISTIC、CSCD
卷号:25
期号:1
页面范围:39-41,58
ISSN号:1001-3695
关键字:协同过滤;稀疏矩阵;相似度;个性化推荐
摘要:在分析传统推荐算法不足的基础上,提出一种稀疏矩阵下的个性化改进策略.首先进行一对一的个性化预测,得到虚拟用户评分矩阵,在此基础上再进行综合预测.该方法避免了传统推荐算法中推荐值与用户相似度不密切相关的弊端,提高了协同过滤的预测精度,尤其是在矩阵极端稀疏情况下的预测精度.最后通过实验验证了算法的有效性和优越性.