个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
电子邮箱:weiwang@dlut.edu.cn
GLOBAL BOUNDEDNESS OF SOLUTIONS TO A KELLER-SEGEL SYSTEM WITH NONLINEAR SENSITIVITY
点击次数:
论文类型:期刊论文
发表时间:2016-06-01
发表刊物:DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B
收录刊物:SCIE
卷号:21
期号:4
页面范围:1317-1327
ISSN号:1531-3492
关键字:Chemotaxis; Keller-Segel system; boundedness; nonlinear sensitivity
摘要:This paper considers the parabolic-parabolic Keller-Segel system with nonlinear sensitivity u(t) = Delta u - del(u(alpha)del v), v(t) = Delta v - v+u, subject to homogeneous Neumann boundary conditions with smooth and bounded domain Omega subset of R-n , n >= 1. It is proved that if alpha >= max{1, 2/n}, then the solutions are globally bounded, and both the components u and v decay to the same constant steady state (u) over bar0 = 1/vertical bar Omega vertical bar integral(Omega) u(0)(x)dx exponentially in the L-infinity-norm provided both parallel to u(0)parallel to L-q*((Omega)) and parallel to del v(0)parallel to(Lp)* ((Omega)) small enough with q* = n alpha K/n+K, p* = n alpha K/n+K-n alpha, K is an element of [n, 2n alpha - n] boolean AND ((alpha - 1)n, infinity).