王巍

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

电子邮箱:weiwang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Uniqueness of weak solutions to a high dimensional Keller-Segel equation with degenerate diffusion and nonlocal aggregation

点击次数:

论文类型:期刊论文

发表时间:2016-03-01

发表刊物:NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS

收录刊物:SCIE、EI

卷号:134

页面范围:204-214

ISSN号:0362-546X

关键字:Keller-Segel model; Degenerate diffusion; Nonlocal aggregation; Uniqueness of weak solutions; Optimal transportation; Wasserstein distance

摘要:This paper considers weak solutions to the degenerate Keller-Segel equation with nonlocal aggregation: u(t) = Delta u(m) - del . (uB(u)) in R-d x R+, where B(u) = del((-Delta)(-beta/2) u), d >= 3, beta is an element of [2, d), 1 < m < 2 - beta/d. In a previous paper of the authors (Hong et al., 2015), a criterion was established for global existence versus finite time blow-up of weak solutions to the problem. A natural question is whether the uniqueness is true for the weak solutions obtained. A positive answer is given in this paper that the global weak solutions must be unique provided the second moment of initial data is finite, which means that the weak solutions are weak entropy solutions in fact. The framework of the proof is based on the optimal transportation method. (C) 2016 Elsevier Ltd. All rights reserved.