Indexed by:期刊论文
Date of Publication:2018-01-01
Journal:IEEE ACCESS
Included Journals:SCIE
Volume:6
Page Number:43315-43326
ISSN No.:2169-3536
Key Words:Multi-view learning; generative model; unsupervised learning; generative adversarial networks
Abstract:The problem of multi-view transformation is associated with transforming available source views of a given object into unknown target views. To solve this problem, a Mutual-Encoding InfoGenerative Adversarial Networks (MEIGANs)-based algorithm is proposed in this paper. A mutual-encoding representation learning network is proposed to obtain multi-view representations, i.e., it guarantees through encoders different views of the same object are mapped to the common representation, which carries enough information with respect to the object itself. An InfoGenerative Adversarial Networks-based transformation network is proposed to transform multi-views of the given object, which carries the representation information in the generative models and discriminative models, guaranteeing the synthetic transformed view matches the source view. The advantages of the MEIGAN are that it bypasses direct mappings among different views, and can solve the problem of missing views in training data and the problem of mapping between transformed views and source views. Finally, experiments on incomplete data to complete data restoration tasks on MNIST, CelebA, and multi-view angle transformation tasks on 3-D rendered chairs and multi-view clothing show the proposed algorithm yields satisfactory transformation results.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Main positions:计算机科学与技术学院党委书记
Gender:Male
Alma Mater:吉林大学
Degree:Doctoral Degree
School/Department:计算机科学与技术学院
Discipline:Computer Applied Technology
Business Address:海山楼A1022
Contact Information:hwge@dlut.edu.cn
Open time:..
The Last Update Time:..