葛宏伟
Personal Homepage
Paper Publications
Stacked Denoising Extreme Learning Machine Autoencoder Based on Graph Embedding for Feature Representation
Hits:

Indexed by:Journal Papers

Date of Publication:2019-01-01

Journal:IEEE Access

Volume:7

Page Number:13433-13444

Key Words:Clustering algorithms; Embeddings; Knowledge acquisition, Auto encoders; De-noising; Extreme learning machine; Feature representation; Fisher discrimination; Generalization ability; Graph embeddings; State-of-the-art algorithms, Learning systems

Abstract:Extreme learning machine is characterized by less training parameters, fast training speed, and strong generalization ability. It has been applied to obtain feature representations from the complex data in the tasks of data clustering or classification. In this paper, a graph embedding-based denoising extreme learning machine autoencoder (GDELM-AE) is proposed for capturing the structure of the inputs. Specifically, in GDELM-AE, a graph embedding framework that contains an intrinsic graph and a penalty graph constructed by local Fisher discrimination analysis is integrated into the autoencoder. So, it can exploit both local structure and global structure information in extreme learning machine (ELM) spaces. Further, we propose a stacked graph embedded denoising (SGD)-ELM by stacking several GDELM-AEs. The experimental results on several benchmarks validate that GDELM-AE can obtain efficient and robust feature representation of original data; moreover, the stacked GDELM-AE can obtain high-level and noise-robust representations. The comparative results with the state-of-the-art algorithms indicate that the proposed algorithm can obtain better accuracy as well as faster training speed. © 2019 IEEE.

Personal information

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Main positions:计算机科学与技术学院党委书记

Gender:Male

Alma Mater:吉林大学

Degree:Doctoral Degree

School/Department:计算机科学与技术学院

Discipline:Computer Applied Technology

Business Address:海山楼A1022

Contact Information:hwge@dlut.edu.cn

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version