![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:计算机科学与技术学院党委书记
性别:男
毕业院校:吉林大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术
办公地点:海山楼A1022
联系方式:hwge@dlut.edu.cn
电子邮箱:gehw@dlut.edu.cn
A Two-Engine interaction driven many-objective evolutionary algorithm with feasibility-aware adaptation
点击次数:
论文类型:期刊论文
发表时间:2019-09-01
发表刊物:APPLIED SOFT COMPUTING
收录刊物:EI、SCIE
卷号:82
ISSN号:1568-4946
关键字:Many-objective optimization; Reference vector; Feasible objective space; Interaction; Adaptation
摘要:The infeasible parts of the objective space in many-objective optimization problems make evolutionary algorithms face difficulties in obtaining proximity and maintaining diversity simultaneously. This paper proposes a Two-Engine interaction driven many-objective Evolutionary Algorithm with feasibility-aware adaptation (TEEA) that adapts the reference vectors and evolves the population towards the true Pareto Front (PF). The two interacting engines make reference vectors always approximately evenly distributed within the current PF for providing appropriate guidance for selection. The current PF is tracked by maintaining an Individual Archive (IA) of undominated individuals, and the adaptation of reference vectors is conducted with the help of a Reference Archive (RA) that contains layers of reference vectors corresponding to different density. On CEC'2018 benchmark functions with competition standards, the experimental results of the proposed TEEA have demonstrated the expected characteristics and competitive performance. (C) 2019 Elsevier B.V. All rights reserved.