![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:计算机科学与技术学院党委书记
性别:男
毕业院校:吉林大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术
办公地点:海山楼A1022
联系方式:hwge@dlut.edu.cn
电子邮箱:gehw@dlut.edu.cn
Strategy Selection in Complex Game Environments Based on Transfer Reinforcement Learning
点击次数:
发表时间:2022-10-08
发表刊物:2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)
所属单位:电子信息与电气工程学部
卷号:2019-July
ISSN号:2161-4393
摘要:Boosting the learning process in the new task by making use of previously obtained knowledge has been a challenging task in many fields of industrial engineering and scientific. In this paper, we propose a transfer reinforcement learning model with knowledge Inheritance and decision-making Assistance (trIA). In the stage of knowledge inheritance, trIA adopts a model that employs a simultaneous multi-task and multi-instance learning strategy to compress acquired experts knowledge from distinct task into a global multi-task agent. In the stage of decision-making assistance, trIA adopts a dual-column progressive neural network framework to fully utilize the previous knowledge in the global multi-task agent and the acquired knowledge in the new task. The experimental results on the Atari domain demonstrate that the proposed knowledge inheritance model can performed at nearly the same level as the experts on the distinct source task environments. The results also demonstrate that the decision-making assistance model can transfer knowledge from the source tasks to the target tasks effectively. Moreover, the comparative results with the state-of-the-art algorithms validate the effectiveness of the proposed trIA for strategy selection in complex game environments.
备注:新增回溯数据