彭伟

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:物理学院

学科:光学工程. 光学

办公地点:物理与光电工程学院235

联系方式:wpeng@dlut.edu.cn

电子邮箱:wpeng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles

点击次数:

论文类型:期刊论文

发表时间:2018-10-15

发表刊物:BIOSENSORS & BIOELECTRONICS

收录刊物:PubMed、SCIE

卷号:117

页面范围:637-643

ISSN号:0956-5663

关键字:Surface plasmon resonance; Glucose; P-mercaptophenylboronicacid-modified Au nanoparticles; Signal amplification tag

摘要:A highly sensitive surface plasmon resonance (SPR) sensor is reported for glucose detection using self-assembled p-mercaptophenylboronic acid (PMBA) monolayer on Au coated optical fibers. The cis-diol group of saccharides, such as for glucose, interacted with the self-assembled PMBA monolayers on the optical fibers, but the low molecular mass of glucose is insufficient for measuring a significant shift in SPR wavelength. The response for glucose was thus enhanced with Au nanoparticles (Au NPs) modified with 2-aminoethanethiol (AET) and PMBA. Selectivity was assured since glucose has the ability to capture the signal amplification tags (Au NPs/AETPMBA) through secondary binding with another set of syn-periplanar diol groups and the PMBA on the gold surface. Accordingly, a glucose concentration-dependent sandwich structure was formed and the coupling between Au NPs and Au film results in the red shift of SPR resonance wavelength. The experimental results demonstrated that this SPR sensor responded to glucose within a range of 0.01-30 mM better than to fructose and galactose. The minimum concentration for quantify glucose is as low as 80 nM, which is lower than the physiological blood glucose level. Glucose was then accurately detected in urine sample, which indicated the potential application of the sensor for the analysis of glucose in urine. We believe that our proposed PMBA-modified single amplification tag and sensing principle can also be used for biomolecules consisting of carbohydrate structures, particularly for DNA-associated bioanalysis.