Indexed by:期刊论文
Date of Publication:2016-01-01
Journal:IEEE ACCESS
Included Journals:SCIE、EI
Volume:4
Page Number:3201-3209
ISSN No.:2169-3536
Key Words:Multi-label; classification; clustering; recommendation
Abstract:With the explosive development of communication technologies, more customer friendly services have been designed for the next generation of cellular technology, that is, fifth-generation (5G) communication. However, such services require more computing resources and energy. Thus, the development of green and energy-efficient 5G application systems has become an important topic in communications. In this paper, we focus on high-performance multi-label classification methods and their application for medical recommendations in the domain of 5G communication. In machine learning, multi-label classification involves assigning multiple target labels to each query instance. The vast number of labels poses a challenge for maintaining efficiency. Several related approaches have been proposed to meet this challenge. In this paper, we propose two label selection methods for multi-label classification: clustering-based sampling and frequency-based sampling. We apply our proposed multi-label classification methods as an innovative 5G application to predict doctor labels for doctor recommendations. We perform experiments on real-world data sets. The experimental results show that our methods achieve the state-of-the-art performance compared with baselines. In addition, we develop a mobile application of a doctor recommendation system based on our proposed methods.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:Dalian University of Technology
Discipline:Computer Applied Technology
Business Address:816 Yanjiao Building, Dalian University of Technology
Open time:..
The Last Update Time:..