location: Current position: Home >> Scientific Research >> Paper Publications

Fe3O4 quantum dots embedded in porous carbon microspheres for long-life lithium-ion batteries

Hits:

Indexed by:Journal Papers

Date of Publication:2019-01-01

Journal:Materials today Energy

Volume:12

Page Number:269-276

Key Words:Carbon; Electric discharges; Electrodes; Ions; Iron oxides; Magnetite; Micelles; Microspheres; Nanocrystals; Porous materials; Semiconductor quantum dots; Textures; Transition metal oxides; Transition metals, Battery; Carbon microspheres; Discharge process; Electrode material; Electrostatic attractions; Fe3O4; Porous carbon microspheres; Uniform dispersions, Lithium-ion batteries

Abstract:We report here Fe 3 O 4 quantum dots embedded Fe 3 O 4 @C electrode materials via a facile micelle-colloid template method for pushing forward the Li-ion battery technology. To improve uniform dispersion of Fe 3 O 4 quantum dots (5–10 nm) and create macropores in the carbon matrix, ferric micelle colloids of CTA + X −1 Fe 3+ with chelate adsorption of ferric colloids on CTAB micelle corona by electrostatic attraction has been developed in a resin layer. Thus, nanocrystalline Fe 3 O 4 and graphitic carbon matrix are mutually formed from the same texture during the pyrolysis process, resulting in a tightly tangled carbon-Fe 3 O 4 hybrids. The conformable embedment of Fe 3 O 4 quantum dots in carbon matrix can effectively prevent its loss and alleviate local tension stress for volume variation during change-discharge process. The well structure-designed Fe 3 O 4 @C electrode materials deliver a stable capacity of 601 mA h g −1 at 2 A g −1 even after 800 cycles. This work provides a new strategy for design of transition-metal-oxide based electrode materials for long-life lithium-ion batteries. © 2019 Elsevier Ltd

Pre One:双膜组件及耦合工艺的研究与应用进展

Next One:Ni and Co doped yolk-shell type Fe2O3 hollow microspheres as anode materials for lithium-ion batteries