李祥村

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

电子邮箱:lixiangcun@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Highly active catalysis-membrane system: Enhanced recyclability, durability and longevity properties for H-2 generation

点击次数:

论文类型:期刊论文

发表时间:2016-06-01

发表刊物:CHEMICAL ENGINEERING JOURNAL

收录刊物:SCIE、EI

卷号:293

期号:293

页面范围:252-258

ISSN号:1385-8947

关键字:Pt@RF microspheres; Membrane model; Hydrogen generation; Recyclability

摘要:In this work, for the first time, a typical catalysis-membrane system was designed for highly efficient H-2 generation from catalytic hydrolysis of NH3BH3 (AB). The Pt nanoparticles (NPs) were tightly deposited on RF (resin microspheres) surface and the Pt@RF microspheres were then uniformly confined in the macroporous framework of a poly (vinylidene fluoride) hollow fiber membrane (PVDF). Compared with the previous reports, granular catalysts can be easily recycled and reused in our catalysis-membrane system. Furthermore, the circular solution in the membrane module could flush away the adsorbed metaborate on the Pt NPs, preventing passivation of the Pt NPs and increasing the accessibility of the active sites. In addition, the activation energy of the system was calculated to be only 13.69 kJ.mol(-1), smaller than those of the previous noble metal catalysts or non-noble metal-based catalysts for the same reaction, indicating the superior catalytic performance of the membrane module. Due to the high activity, circular reaction system, and macroporous membrane support, a high H-2 generation rate of 258.1 mol H-2/(mol(cat).min.m(2) membrane) was obtained for the catalysis-membrane module. Moreover, catalytic efficiency of the system remains well after 60 days. For its easy operation, good recyclability, durability and longevity, it is believed that the catalyst-membrane system can be easily scaled up for practical H-2 generation, leading to applications for AB in the field of fuel cells and guiding new design of highly efficient catalysis module. (C) 2016 Elsevier B.V. All rights reserved.