李祥村

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

电子邮箱:lixiangcun@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Patterned macroporous Fe3C/C membrane-induced high ionic conductivity for integrated Lisulfur battery cathodes

点击次数:

论文类型:期刊论文

发表时间:2019-09-28

发表刊物:JOURNAL OF MATERIALS CHEMISTRY A

收录刊物:EI、SCIE

卷号:7

期号:36

页面范围:20614-20623

ISSN号:2050-7488

摘要:To realize an Al-free cathode and to push forward the Li-S battery technology for practical applications, a multifunctional three-layer-structured Fe3C/C membrane was prepared at a large-scale via a facile phase-inversion method. The scalable yet flexible self-supporting Fe3C/C membrane is an ideal Al foilfree cathode material for high-energy and long cycling Li-S batteries. The conductive dense layer of the Fe3C/C membrane can replace the Al foil as a current collector and the finger-like macropores can host most of the sulfur active material (1.5-3.0 mg cm 2), thus buffering the volume expansion of the sulfur species and facilitating the ion/electrolyte transport for fast reaction kinetics; meanwhile, the sponge-like pores in the top layer of the composite membrane enable further S slurry loading. Density functional theory simulation (DFT) and Li2S6 adsorption measurements reveal that the doped Fe3C species in the composite membrane could effectively immobilize the S species and suppress the shuttle effect of the soluble polysulfides (LiPSs). The rationally designed Fe3C/C membrane cathodes could deliver a capacity of 601 mA h g 1 at 1C after 200 cycles even at a high sulfur loading of 3.4 mg cm 2, with a high areal capacity of 2.1 mA h cm 2. The cell with the sulfur loading of 3.4 mg cm 2 delivered a gravimetric energy density and volumetric energy density of 850 W h kg 1 and 1223 W h L 1, respectively. The selfsupporting membrane cathode with simultaneous commercial S filling and S/C slurry coating provides an alternative sulfur loading approach for battery assembly, thus presenting a useful strategy for practical applications in high energy-density and long cycling Li-S batteries.