• 其他栏目

    丛洪滋

    • 教授     博士生导师 硕士生导师
    • 性别:男
    • 毕业院校:复旦大学
    • 学位:博士
    • 所在单位:数学科学学院
    • 学科:应用数学
    • 办公地点:数学楼416
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    Introduction and main results

    点击次数:

      发布时间:2019-03-09

      论文类型:期刊论文

      发表时间:2016-01-01

      发表刊物:MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY

      收录刊物:SCIE

      卷号:239

      期号:1134

      页面范围:1-+

      ISSN号:0065-9266

      关键字:KAM tori; Normal form; Stability; p-tame property; KAM technique

      摘要:We prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrodinger equation
         root-1u(t) = u(xx) - M(xi)u + epsilon vertical bar u vertical bar(2)u,
         subject to Dirichlet boundary conditions u(t, 0) = u(t, pi) = 0, where M-xi is a real Fourier multiplier. More precisely, we show that, for a typical Fourier multiplier M-xi, any solution with the initial datum in the delta-neighborhood of a KAM torus still stays in the 2 delta-neighborhood of the KAM torus for a polynomial long time such as vertical bar t vertical bar = delta(-M) for any given M with 0 <= M <= C(epsilon), where C(epsilon) is a constant depending on e and C(epsilon) -> infinity as epsilon -> 0.