Hits:
Indexed by:期刊论文
Date of Publication:2016-10-14
Journal:PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Included Journals:SCIE、PubMed
Volume:18
Issue:38
Page Number:26854-26864
ISSN No.:1463-9076
Abstract:Graphene based nanocomposites have been investigated intensively, as electrode materials for energy storage applications. In the current work, a graphene-CNT-MnO2-PANI (GCM@PANI) nanocomposite has been synthesized on 3D graphene grown on nickel foam, as a highly efficient binder free electrode material for supercapacitors. Interestingly, the specific capacitance of the synthesized electrode increases up to the first 1500 charge-discharge cycles, and is thus referred to as an electrode activation process. The activated GCM@PANI nanocomposite electrode exhibits an extraordinary galvanostatic specific capacitance of 3037 F g(-1) at a current density of 8 A g(-1). The synthesized nanocomposite exhibits an excellent cyclic stability with a capacitance retention of 83% over 12000 charge-discharge cycles, and a high rate capability by retaining a specific capacitance of 84.6% at a current density of 20 A g(-1). The structural and electrochemical analysis of the synthesized nanocomposite suggests that the astonishing electrochemical performance might be attributed to the growth of a novel PANI nanoparticle layer and the synergistic effect of CNT/MnO2 nanostructures.