胡小鹏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:帝国理工学院

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术. 信号与信息处理

办公地点:创新园大厦-A0922

联系方式:18641135356

电子邮箱:xphu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Gestalt-grouping based on path analysis for saliency detection

点击次数:

论文类型:期刊论文

发表时间:2019-10-01

发表刊物:SIGNAL PROCESSING-IMAGE COMMUNICATION

收录刊物:SCIE、EI

卷号:78

页面范围:9-20

ISSN号:0923-5965

关键字:Gestalt-grouping; Smoothest path-based distance; Topological connectedness; Salient region detection

摘要:Due to the arbitrary scales, uncertain distributions of objects and cluttered background in natural scenes, uniformly detecting salient regions remains a challenge. This paper first proposes a Gestalt-grouping connectedness method based on path analysis to reflect the topological relationship between image pixels. Inspired by the Gestalt principles of feature grouping, we apply a smoothest path-based distance metric to capture the similarity, local proximity and global continuity between image pixels. The distance is small if the image pixels belong to the same visual region and large otherwise. To identify salient regions in natural images, we then propose a path-based background saliency model that integrates both the topological connectedness and appearance dissimilarity. Experimental results demonstrate the advantage of applying the path-based background saliency model in uniformly highlighting salient regions in images with complex backgrounds.