个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:帝国理工学院
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术. 信号与信息处理
办公地点:创新园大厦-A0922
联系方式:18641135356
电子邮箱:xphu@dlut.edu.cn
Gestalt-grouping based on path analysis for saliency detection
点击次数:
论文类型:期刊论文
发表时间:2019-10-01
发表刊物:SIGNAL PROCESSING-IMAGE COMMUNICATION
收录刊物:SCIE、EI
卷号:78
页面范围:9-20
ISSN号:0923-5965
关键字:Gestalt-grouping; Smoothest path-based distance; Topological connectedness; Salient region detection
摘要:Due to the arbitrary scales, uncertain distributions of objects and cluttered background in natural scenes, uniformly detecting salient regions remains a challenge. This paper first proposes a Gestalt-grouping connectedness method based on path analysis to reflect the topological relationship between image pixels. Inspired by the Gestalt principles of feature grouping, we apply a smoothest path-based distance metric to capture the similarity, local proximity and global continuity between image pixels. The distance is small if the image pixels belong to the same visual region and large otherwise. To identify salient regions in natural images, we then propose a path-based background saliency model that integrates both the topological connectedness and appearance dissimilarity. Experimental results demonstrate the advantage of applying the path-based background saliency model in uniformly highlighting salient regions in images with complex backgrounds.