• 更多栏目

    董旭峰

    • 教授     博士生导师   硕士生导师
    • 主要任职:材料科学与工程学院副院长
    • 性别:男
    • 毕业院校:哈尔滨工业大学
    • 学位:博士
    • 所在单位:材料科学与工程学院
    • 学科:材料学
    • 办公地点:大连理工大学材料馆224
    • 联系方式:dongxf@dlut.edu.cn
    • 电子邮箱:dongxf@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Properties of cobalt nanofiber-based magnetorheological fluids

    点击次数:

    论文类型:期刊论文

    发表时间:2015-01-01

    发表刊物:RSC ADVANCES

    收录刊物:SCIE、EI、Scopus

    卷号:5

    期号:18

    页面范围:13958-13963

    ISSN号:2046-2069

    摘要:Co nanofibers were synthesized by a surfactant-assisted solvothermal method. They were characterized by XRD, EDS, SEM, TEM and SQUID. The results indicated that the obtained products were hexagonal close-packed cobalt nanofibers with high purity. They presented large length to diameter ratio, and a high saturation magnetization of 142 emu g(-1). Two magnetorheological (MR) fluids were prepared by the Co nanofibers and carbonyl iron particles with 12% particles volume fraction, respectively. Their magnetorheological properties and sedimentation stability were tested and compared. The results indicated that the Co nanofiber-based MR fluid presented higher yield stress than the carbonyl iron particles-based one at low field levels (0-150 kA m(-1)). The strong chains or column structure caused by the specific morphology and high magnetization of the Co nanofibers is responsible for their significant MR properties. In 15 days setting, the Co nanofibers-based MR fluid presented little sedimentation, while the sedimentation ratio of the carbonyl iron particles-based MR fluid was 50%. The Co nanofibers are ideal candidates to prepare MR fluids with good sedimentation stability as well as good magnetorheological properties.