卢晓红

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:机械工程学院

学科:机械电子工程. 精密仪器及机械

办公地点:机械知方楼7029

联系方式:lxhdlut@dlut.edu.cn

电子邮箱:lxhdlut@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Research on the prediction model of micro-milling surface roughness

点击次数:

论文类型:期刊论文

发表时间:2013-01-01

发表刊物:International Journal of Nanomanufacturing

收录刊物:EI、Scopus

卷号:9

期号:5-6

页面范围:457-467

ISSN号:17469392

关键字:Surface roughness, Inconel718, Micro-milling, Prediction model, Support vector machine regression

摘要:Surface roughness is an important performance indication for micro-milling processing. Establishing a roughness-prediction model with high-precision is helpful to select the cutting parameters for micro-milling. Two prediction models are established by response surface method (RSM) and support vector machine regression (SVM) in this paper. Four cutting parameters are involved in the models (extended length of micro-milling tool, spindle speed, feed per tooth, and cutting depth in the axial direction). The models are established for material of brass. Experiments are carried out to verify the accuracy of the models. The results show that SVM prediction model has higher prediction accuracy, predict the variation law of micro-milling surface roughness better than RSM. Copyright ? 2013 Inderscience Enterprises Ltd.