个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
学科:机械电子工程. 精密仪器及机械
办公地点:机械知方楼7029
联系方式:lxhdlut@dlut.edu.cn
电子邮箱:lxhdlut@dlut.edu.cn
Anisotropic sliding on dual-rail hydrophilic tracks
点击次数:
论文类型:期刊论文
发表时间:2017-03-21
发表刊物:LAB ON A CHIP
收录刊物:SCIE、PubMed
卷号:17
期号:6
页面范围:1041-1050
ISSN号:1473-0197
关键字:CONTROLLABLE WATER ADHESION; SUPERHYDROPHOBIC SURFACES; FACILE FABRICATION; PREDICTION MODEL; WETTABILITY; TRANSPORT; DROPLETS; ROBUST; LEAF; ROUGHNESS
摘要:Biomimetic surfaces with sliding angle (SA) anisotropy have the capacity to directionally control the motion of water droplets and therefore have wide applications in various domains. Parallel and narrowing dual-rail hydrophilic tracks (DRHTs) are fabricated on etched superhydrophobic Al surfaces using a micromilling technique. Orthogonal and linear SA anisotropies are observed and investigated on the parallel and narrowing DRHTs, respectively. Track spacings of the parallel DRHTs are designed to regulate the orthogonal SA anisotropy of the water droplet. Experimental data shows that the along-track droplet-substrate interfacial widths, together with the sliding anisotropy, decrease with the increase of the track spacings. SA contrast (linear SA anisotropy) in two opposite directions along the tracks is observed and discussed on the narrowing DRHTs. Results indicate that droplets slide with more difficulty in the spacing-expanding direction than those in the shrinking direction, and when a droplet is dispensed at the tail end of a DRHT segment, the along-track outward detaching SAs and inward SAs also show sharp linear anisotropy due to the droplet-track interfacial liquid tension. On the basis of the discussed orthogonal and linear SAs, potential lab-on-a-chip applications for intelligent droplet transport, mixing and capture & release are explored.