卢晓红

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:机械工程学院

学科:机械电子工程. 精密仪器及机械

办公地点:机械知方楼7029

联系方式:lxhdlut@dlut.edu.cn

电子邮箱:lxhdlut@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

微铣削表面粗糙度预测模型的研究

点击次数:

论文类型:期刊论文

发表时间:2013-10-20

发表刊物:新型工业化

期号:10

页面范围:39-47

关键字:微铣削;表面粗糙度;预测模型;响应曲面法;支持向量机回归

摘要:微铣削表面粗糙度是衡量加工过程的一个重要性能指标,建立预测精度较高的微铣削表面粗糙度预测模型,准确地预测和控制零件微铣削加工后的表面粗糙度,对于合理选择工艺参数指导零件的实际加工意义重大。本文结合目前微铣削表面粗糙度预测模型的研究现状,针对黄铜件分别采用响应曲面法(RSM)和支持向量机(SVM)回归建立关于刀具悬伸量、主轴转速、每齿进给量、轴向切深四个切削参数的微铣削表面粗糙度预测模型,并通过微铣削加工试验对两种方法建立的预测模型进行对比验证,结果表明SVM预测模型预测均方误差仅为RSM预测模型的17.9%,预测精度较高,能够较好的预测微铣削表面粗糙度的大小和变化规律。因此,SVM预测模型更适合于微铣削表面粗糙度的预测。