个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
学科:机械电子工程. 精密仪器及机械
办公地点:机械知方楼7029
联系方式:lxhdlut@dlut.edu.cn
电子邮箱:lxhdlut@dlut.edu.cn
Prediction of the tensile strength of friction stir welded joints based on one-dimensional convolutional neural network
点击次数:
论文类型:期刊论文
发表时间:2024-05-28
发表刊物:Journal of Intelligent and Fuzzy Systems
卷号:45
期号:2
页面范围:2279-2288
ISSN号:1064-1246
摘要:Friction stir welding (FSW) is a complex thermo-mechanical coupling process. Tensile strength is an important evaluation index of the mechanical properties of welded joints. How to realize the real-time prediction of tensile strength of the friction stir welded joints to reflect the dynamic change of welding state is a problem in the field. To solve this problem, this paper presents a multi-scale one-dimensional convolutional neural network (Multi-scale 1D CNN) prediction model using time series data of temperature and axial force as inputs to realize the online prediction of tensile strength of welded joints. Firstly, FSW experiments are carried out to obtain time series data of temperature and axial force. Tensile strength values of the welded joints is obtained by tensile tests. The time series data and tensile strength values are fused as a dataset. Then Multi-scale 1D CNN, traditional 1D CNN and Multi-channel 1D CNN prediction models are established and trained with the dataset, respectively. Finally, by comparing the prediction performance of the three models, Multi-scale 1D CNN is proved to be more suitable for analyzing time series data to feedback the dynamic change of tensile strength of the joints during welding.