卢晓红

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:机械工程学院

学科:机械电子工程. 精密仪器及机械

办公地点:机械知方楼7029

联系方式:lxhdlut@dlut.edu.cn

电子邮箱:lxhdlut@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Intelligent Prediction of FSW Physical Quantity and Joint Mechanical Properties A method for achieving high-precision prediction of weld tensile strength of aluminum alloy 2219-18 thick plate is proposed

点击次数:

论文类型:期刊论文

发表时间:2024-04-29

发表刊物:WELDING JOURNAL

卷号:103

期号:1

页面范围:12S-24S

ISSN号:0043-2296

关键字:FORCE; OPTIMIZATION; TEMPERATURE

摘要:Friction stir welding (FSW) process parameters influence welding temperature field and axial force, which affect welding strength. At present, how the FSW process parameters of aluminum alloy
2219-T8 thick plates influence process physical quantity and how the process physical quantity changes the tensile strength about the welded joint are unknown. We focus on the intelligent prediction of FSW temperature, axial force, and mechanical properties, to provide a basis for FSW process control of aluminum alloy 2219-T8 thick plate. Firstly, we conducted the FSW experiment of aluminum alloy 2219-T8 thick plate. Then, we input
the welding process parameters, set up a prediction model by particle swarm optimization-back propagation (PSO-BP) neural network to predict the peak temperature and axial force. Finally, we input the peak temperature and axial force, use genetic algorithm-back propagation (GA-BP) neural network to establish a weld tensile strength estimation model, and comply with the prediction of tensile strength.