location: Current position: Home >> Scientific Research >> Paper Publications

Multicaloric effect in bi-layer multiferroic composites

Hits:

Indexed by:Journal Papers

Date of Publication:2015-11-02

Journal:APPLIED PHYSICS LETTERS

Included Journals:SCIE、EI、Scopus

Volume:107

Issue:18

ISSN No.:0003-6951

Abstract:The multicaloric effect was theoretically proposed in 2012 and, despite numerous follow up studies, the effect still awaits experimental confirmation. The main limitation is the fact that the multicaloric effect is only observed at a temperature equal to the transition temperature of the magnetic and electric phases coexisting within a multiferroic (MF) (i.e., T approximate to T-c(m)approximate to T-c(e)). Such condition is hard to fulfill in single phase MFs and a solution is to develop suitable composite MF materials. Here, we examine the multicaloric effect in a bi-layer laminated composite MF in order to determine the optimal design parameters for best caloric response. We show that magnetically induced multicaloric effect requires magnetic component of heat capacity smaller than that of the electric phase, while the layer thickness of the magnetic phase must be at least 5 times the thickness of the electric phase. The electrically induced multicaloric effect requires the magnetic layer to be 10% of the electric phase thickness, while its heat capacity must be larger than that of the electric phase. These selection rules are generally applicable to bulk as well as thin film MF composites for optimal multicaloric effect. (C) 2015 AIP Publishing LLC.

Pre One:DC reactively sputtered TiNx thin films for capacitor electrodes

Next One:Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering