location: Current position: Home >> Scientific Research >> Paper Publications

Rapid phase transition of a phase-change metamaterial perfect absorber

Hits:

Indexed by:期刊论文

Date of Publication:2013-08-01

Journal:OPTICAL MATERIALS EXPRESS

Included Journals:SCIE、EI、Scopus

Volume:3

Issue:8

Page Number:1101-1110

ISSN No.:2159-3930

Abstract:Phase-change materials (PCMs) have great potential in applications for data storage, optical switching and tunable photonic devices. However, heating the whole of the phase change material at a high speed presents a key challenge. Here, for the first time, we model the incorporation of the phase-change material (Ge2Sb2Te5) within a metamaterial perfect absorber (MMPA) and show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 900K (melting point of Ge2Sb2Te5) in just a few nanoseconds with a low light intensity of 150 W/m(2), owing to the enhanced light absorption through strong plasmonic resonances in the absorber. Our structure is composed of an array of thin gold (Au) squares separated from a continuous Au film by a Ge2Sb2Te5 layer. A Finite Element Method photothermal model is used to study the temporal variation of temperature in the Ge2Sb2Te5 layer. It is also shown that an absorber with a widely tunable spectrum can be obtained by switching between the amorphous and crystalline states of Ge2Sb2Te5. The study lowers the power requirements for photonic devices based on a thermal phase change and paves the way for the realization of ultrafast photothermally tunable photonic devices. (C) 2013 Optical Society of America

Pre One:Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime

Next One:Highly sensitive fiber pressure sensor based on off-center diaphragm reflection