个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:光电工程与仪器科学学院院长、党委副书记
其他任职:辽宁省先进光电子技术重点实验室副主任,大连市新型功能材料与光电子器件重点实验室主任,中国超材料学会理事,中国机械工程学会极端制造分委员会委员,国际先进材料学会会士,Microsystems&Nanoengineering、chemosensors等期刊副编辑
性别:男
毕业院校:布里斯托尔大学
学位:博士
所在单位:光电工程与仪器科学学院
学科:光学工程. 电磁场与微波技术. 光学. 测试计量技术及仪器. 精密仪器及机械
办公地点:研教楼706
联系方式:0411-84706156
电子邮箱:caotun1806@dlut.edu.cn
Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface
点击次数:
论文类型:期刊论文
发表时间:2016-02-01
发表刊物:OPTICAL MATERIALS EXPRESS
收录刊物:SCIE、EI
卷号:6
期号:2
页面范围:303-311
ISSN号:2159-3930
摘要:Chirality routinely occurs in 3D metamaterials (MMs) lacking mirror symmetry or quasi 2D planar MMs lacking in-plane mirror symmetry. However, realization of such asymmetric MMs in the high frequency region remains challenging since it is hard to precisely control the asymmetric geometry of the ultrasmall meta-atom. Moreover, another limiting factor of those MMs is their weak extrinsically 2D-chiral effect such as circular polarization conversion difference (CPCD). Here, we theoretically demonstrate that a highly symmetric metasurface (MS), also known as 2D planar MMs, can produce a dual-band strong extrinsic 2D chirality: CPCD in the THz region under off-normal incidence. Our MS consists of an array of circular holes penetrating through a metal/dielectric/metal (MDM) trilayer, where the holes occupy the sites of a rectangular lattice. The CPCD is due to the mutual orientation of circular holes array (CHA) and oblique incident wave. Meanwhile, we show that the CPCD in the single metal layer CHA disappears owing to the absence of magnetic dipolar moment that can significantly enhance chiral effects. The highly symmetric achiral MS with the large CPCD may be operated as flat lenses, chiral sensing and highly efficient polarization converters. (C) 2016 Optical Society of America