个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:光电工程与仪器科学学院院长、党委副书记
其他任职:辽宁省先进光电子技术重点实验室副主任,大连市新型功能材料与光电子器件重点实验室主任,中国超材料学会理事,中国机械工程学会极端制造分委员会委员,国际先进材料学会会士,Microsystems&Nanoengineering、chemosensors等期刊副编辑
性别:男
毕业院校:布里斯托尔大学
学位:博士
所在单位:光电工程与仪器科学学院
学科:光学工程. 电磁场与微波技术. 光学. 测试计量技术及仪器. 精密仪器及机械
办公地点:研教楼706
联系方式:0411-84706156
电子邮箱:caotun1806@dlut.edu.cn
Dynamically reconfigurable topological edge state in phase change photonic crystals
点击次数:
论文类型:期刊论文
发表时间:2019-06-30
发表刊物:SCIENCE BULLETIN
收录刊物:EI、SCIE
卷号:64
期号:12
页面范围:814-822
ISSN号:2095-9273
关键字:Phase change materials; Photonic crystals; Topological edge states; Tunability; Reconfigurability
摘要:The observation of topological edge states (TESs) revolutionized our understanding of scattering and propagation of electromagnetic (EM) waves. Supported by topological robustness, the TES at the interface between trivial and non-trivial insulators was not reflected from the structural disorders and imperfections. Recently topological photonic crystals (PhCs) were demonstrated to obtain remarkable one-way propagation of the TES, having the advantages of lossless propagation, dense integration, and high fabrication tolerance over conventional PhCs. Nevertheless, the lack of reversible switching of TES possesses significant limitations in helicity/spin filtering and tunable photonic devices. We proposed a topological PhC based on a prototypical phase-change material, Ge2Sb2Te5 (GST225) to solve the problem. We find that at a particular frequency, the TES within the structure can be reversibly switched between "on" and "off" by transiting the GST225 structural state between amorphous and crystalline. Moreover, the topology of the PhC was maintained since the tuning of TES was achieved by varying the refractive index of GST225 instead of the structural geometry. This provides a continuous change of the spectral position of the photonic bandgap and TES by gradually crystallising the GST225. We show that the phase change of GST225 from amorphous to crystalline and vice versa can be engineered in nanoseconds. Our proof of concept may offer a platform for dynamically tuning the TESs that might otherwise be challenging to attain in photonic systems. We expect it to have potential applications for photonic devices in topological optical circuits and scatter-free one-way light propagation. (C) 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.