Indexed by:期刊论文
Date of Publication:2012-10-15
Journal:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Included Journals:SCIE、EI、Scopus
Volume:245
Page Number:256-272
ISSN No.:0045-7825
Key Words:Meshfree; Integration; Quadrature; SCNI; Consistency; Hourglass
Abstract:A robust and efficient integration method, named quadratically consistent one-point (QC1) scheme, which evaluates the Galerkin weak form only at the centers of background triangle elements (cells) is proposed for meshfree methods using quadratic basis. The strain at the evaluation points is approximated by corrected (smoothed) nodal derivatives which are determined by a discrete form of the divergence theorem between nodal shape functions and their derivatives in Taylor's expansion. We prove that such smoothed nodal derivatives also meet the differentiation of the approximation consistency (DAC). The same Taylor's expansion is applied to the weak form and the smoothed nodal derivatives are used to compute the stiffness matrix. The proposed QC1 scheme can pass both the linear and the quadratic patch tests exactly in a numerical sense. Several examples are provided to demonstrate its better numerical performance in terms of convergence, accuracy, efficiency and stability over other one-point integration methods in the meshfree literature, especially its superiority over the existing linearly consistent one-point (LC1) quadratures. (C) 2012 Elsevier B.V. All rights reserved.
Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:力学与航空航天学院
Open time:..
The Last Update Time:..