卢一平

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:材料科学与工程学院院长、党委副书记

其他任职:辽宁省高熵合金材料工程研究中心常务副主任、大连理工大学滇西产业发展研究院先进材料制备及装备技术工程研究中心主任

性别:男

毕业院校:西北工业大学

学位:博士

所在单位:材料科学与工程学院

学科:材料加工工程. 材料学. 材料物理与化学

办公地点:辽宁省凝固控制与数字化制备技术重点实验室315室

联系方式:0411-84709400

电子邮箱:luyiping@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy

点击次数:

论文类型:期刊论文

发表时间:2017-12-01

发表刊物:ACTA MATERIALIA

收录刊物:Scopus、SCIE、EI

卷号:141

页面范围:59-66

ISSN号:1359-6454

关键字:Dislocation planar slip; Eutectic high-entropy alloys; Microstructures; Precipitation-strengthening; Stacking faults; Strength and ductility

摘要:Recent studies indicate that eutectic high-entropy alloys can simultaneously possess high strength and high ductility, which have potential applications in industrial fields. Nevertheless, microstructural origins of the excellent strength-ductility combination remain unclear. In this study, an AlCoCrFeNi2.1 eutectic high-entropy alloy was prepared with face-centered cubic (FCC)(L1(2))/body-centered-cubic (BCC)(B2) modulated lamellar structures and a remarkable combination of ultimate tensile strength (1351 MPa) and ductility (15.4%) using the classical casting technique. Post-deformation transmission electron microscopy revealed that the FCC(L1(2)) phase was deformed in a matter of planar dislocation slip, with a slip system of {111} <110>, and stacking faults due to low stacking fault energy. Due to extreme solute drag, high densities of dislocations are distributed homogeneously at {111} slip plane. In the BCC(B2) phase, some dislocations exist on two {110) slip bands. The atom probe tomography analysis revealed a high density of Cr-enriched nano-precipitates, which strengthened the BCC(B2) phase by Orowan mechanisms. Fracture surface observation revealed a ductile fracture in the FCC(L1(2)) phase and a brittle-like fracture in the BCC(B2) lamella. The underlying mechanism for the high strength and high ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy was finally analyzed based on the coupling between the ductile FCC(L1(2)) and brittle BCC(B2) phases. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd.