个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:环境学院
学科:环境科学. 环境工程
办公地点:环境楼B509
联系方式:13889406768
电子邮箱:zhguoquan@dlut.edu.cn
Oxygen Reduction at Carbon Nanotubes (CNTs)/Cobaltous Phthalocyanine (CoPc) and MFC Electricity Generation Affected by Air-Cathode Catalyst Layer Structure
点击次数:
论文类型:期刊论文
发表时间:2016-01-01
发表刊物:JOURNAL OF THE ELECTROCHEMICAL SOCIETY
收录刊物:SCIE、EI、Scopus
卷号:163
期号:10
页面范围:F1209-F1216
ISSN号:0013-4651
摘要:Efficient oxygen reduction reaction (ORR) catalysts - cobaltous phthalocyanine (CoPc) composited with carbon nanotubes (CNTs) were prepared for stable and high power generation in microbial fuel cells (MFCs) treating wastewater. The ORR activities of CoPc composited with CNTs [Long Single-Walled (LSW), Short single-walled (SSW), long multi-walled (LMW) and short multi-walled (SMW)] were investigated and compared. The ORR on SMW-CNTs/CoPc proceeded in a combined 2(e)(-) and 4(e)(-) pathway, while the others followed a dominant 4(e)(-) pathway, supported by the rotating disk electrode techniques and X-ray photoelectron spectroscopy. Cathodes modified with MW-CNTs/CoPc exhibited higher catalytic activity, power output and more stable internal resistance than SW-CNTs/CoPc from CV and power generation results. The Nafion layer either sank into the catalyst composite (SMW-CNTs/CoPc) or spread over it (SSW-CNTs/CoPc), affects internal resistance and MFC performance. The study demonstrated the importance of cathodic catalyst and its surface morphology for higher power generation. (C) 2016 The Electrochemical Society. All rights reserved.