张国权

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境科学. 环境工程

办公地点:环境楼B509

联系方式:13889406768

电子邮箱:zhguoquan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing microbial fuel cell

点击次数:

论文类型:期刊论文

发表时间:2010-05-15

发表刊物:CHEMICAL ENGINEERING JOURNAL

收录刊物:SCIE

卷号:160

期号:1

页面范围:164-169

ISSN号:1385-8947

关键字:Microbial fuel cell; Fenton; Hydrogen peroxide; Amaranth; Iron reduction

摘要:This study investigated degradation of azo dyes by using microbial fuel cell (MFC)-Fenton system, in which in-situ production of H2O2 was achieved through two-electron reduction of oxygen in neutral catholyte. Based on sequential operation where H2O2 was synthesized followed by Fenton reaction, the MFC-conventional Fenton system was shown able to remove amaranth (75 mg/L) with the ratio of 82.59% within 1 h when 1 mmol/L Fe2+ was applied. For the MFC-electrochemical Fenton system with 0.5 mmol/L Fe3+ addition, the removal ratio of amaranth (75 mg/L) could reach 76.43% and cathode potential could keep stable for 1 h. Meanwhile, a maximum power density of 28.3 W/m(3) was obtained, which was larger than that of 17.2 W/m(3) when K3Fe(CN)(6) was used as cathodic electron acceptor. This study suggests a proof-in-concept new manner for biorefractory wastewater treatment using the energy produced from biodegradable wastewater along with electrical energy generation simultaneously, which makes dye-containing wastewater treatment a green treatment process and more sustainable. (C) 2010 Elsevier B.V. All rights reserved.