• 更多栏目

    鲁大伟

    • 教授     博士生导师   硕士生导师
    • 任职 : 统计与金融研究所所长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:数学科学学院
    • 学科:概率论与数理统计. 金融数学与保险精算
    • 办公地点:数学科学学院,π空间,512室

    访问量:

    开通时间:..

    最后更新时间:..

    Some asymptotic formulas of a Brownian motion with regular variation from the maximum and minimum complicated domains

    点击次数:

    论文类型:期刊论文

    发表时间:2016-11-16

    发表刊物:COMMUNICATIONS IN STATISTICS-THEORY AND METHODS

    收录刊物:SCIE、EI、Scopus

    卷号:45

    期号:22

    页面范围:6569-6595

    ISSN号:0361-0926

    关键字:Brownian motion; First exit time; Gordon's ineuqality; Regular variation

    摘要:Consider the following domains:
       D-min = {(x, y(1), y(2)) : parallel to x parallel to < min{(y(j) + h(j) + 1)(1/pj), j = 1, 2}}
       D-max = {(x, y(1), y(2)) : parallel to x parallel to < max{(y(j) + h(j) + 1)(1/pj), j = 1, 2}}
       in Rd+2, d >= 1, respectively, where parallel to . parallel to is the Euclidean norm in R-d, and h(j), j = 1, 2, are the regular variations. Let tau(Dmin) and tau(Dmax) be the first time the Brownian motion exits from D-min and D-max, respectively. Estimates for the asymptotics of log P(tau(Dmin) > t) and log P(t(Dmax) > t) are given for t -> 8, depending on the relationship among p(j), and regular variations h(j), j = 1, 2, respectively. The proofs are based on Gordon's inequality.