• 更多栏目

    鲁大伟

    • 教授     博士生导师   硕士生导师
    • 任职 : 统计与金融研究所所长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:数学科学学院
    • 学科:概率论与数理统计. 金融数学与保险精算
    • 办公地点:数学科学学院,π空间,512室

    访问量:

    开通时间:..

    最后更新时间:..

    Some Asymptotic Formulas for a Brownian Motion From the Maximum and Minimum Complicated Domains

    点击次数:

    论文类型:期刊论文

    发表时间:2015-08-03

    发表刊物:COMMUNICATIONS IN STATISTICS-THEORY AND METHODS

    收录刊物:SCIE、EI、Scopus

    卷号:44

    期号:15

    页面范围:3192-3217

    ISSN号:0361-0926

    关键字:Asymptotical estimates; Brownian motion; Gordon's inequality

    摘要:Consider a Brownian motion with drift starting at an interior point of the minimum or maximum parabolic domains, namely,
       D-min = {(x, y(1), y(2)) : parallel to x parallel to < min(j=1,2) {(y(j) + s(rj) + 1)(1/pj)}},
       D-max = {(x, y(1), y(2)) : parallel to x parallel to < max(j=1,2) {(y(j) + s(rj) + 1)(1/pj)}},
       in Rd+2, d >= 1, respectively, where parallel to . parallel to is the Euclidean norm in R-d. Let tau(Dmin), and tau(Dmax) denote the first times the Brownian motion exits from D-min and D-max. Estimates with exact constants for the asymptotics of logP(tau(Dmin) > t) and logP(tau(Dmax) > t) are given as t -> infinity, depending on the relationship among p(j), r(j), j = 1, 2, respectively. The proofs are based on Gordon's inequality.