鲁大伟
开通时间:..
最后更新时间:..
点击次数:
论文类型:期刊论文
发表时间:2014-05-01
发表刊物:STATISTICS & PROBABILITY LETTERS
收录刊物:SCIE、Scopus
卷号:88
期号:1
页面范围:133-140
ISSN号:0167-7152
关键字:Gordon's inequality; Slepian's inequality; Comparison inequality
摘要:Let {xi(i,j)} and {eta(iota,j)}(1 <= i <= n, 1 <= j <= m) be standard Gaussian random variables. Gordon's inequality says that if E(xi(i,j)xi(i,k)) >= E(eta(i,j)eta(i,k)) for 1 <= i <= n, 1 <= j, k <= m, and E(xi(i,j)xi(l,k)) <= E(eta(i,j)eta(l,k)) for 1 <= i not equal l <= n, 1 <= j, k <= m, the lower bound P(boolean OR(n)(i=1) boolean AND(m)(j=1) {xi(i,j) <= lambda(i,j)})/P/(boolean OR(n)(i=1) boolean AND(m)(j=1)) {eta(i,j) <= lambda(i,j)}) is at least 1. In this paper, two refinements of upper bound for Gordon's inequality are given. (C) 2014 Elsevier B.V. All rights reserved.