• 更多栏目

    鲁大伟

    • 教授     博士生导师   硕士生导师
    • 任职 : 统计与金融研究所所长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:数学科学学院
    • 学科:概率论与数理统计. 金融数学与保险精算
    • 办公地点:数学科学学院,π空间,512室

    访问量:

    开通时间:..

    最后更新时间:..

    Some new normal comparison inequalities related to Gordon's inequality

    点击次数:

    论文类型:期刊论文

    发表时间:2014-05-01

    发表刊物:STATISTICS & PROBABILITY LETTERS

    收录刊物:SCIE、Scopus

    卷号:88

    期号:1

    页面范围:133-140

    ISSN号:0167-7152

    关键字:Gordon's inequality; Slepian's inequality; Comparison inequality

    摘要:Let {xi(i,j)} and {eta(iota,j)}(1 <= i <= n, 1 <= j <= m) be standard Gaussian random variables. Gordon's inequality says that if E(xi(i,j)xi(i,k)) >= E(eta(i,j)eta(i,k)) for 1 <= i <= n, 1 <= j, k <= m, and E(xi(i,j)xi(l,k)) <= E(eta(i,j)eta(l,k)) for 1 <= i not equal l <= n, 1 <= j, k <= m, the lower bound P(boolean OR(n)(i=1) boolean AND(m)(j=1) {xi(i,j) <= lambda(i,j)})/P/(boolean OR(n)(i=1) boolean AND(m)(j=1)) {eta(i,j) <= lambda(i,j)}) is at least 1. In this paper, two refinements of upper bound for Gordon's inequality are given. (C) 2014 Elsevier B.V. All rights reserved.