• 更多栏目

    鲁大伟

    • 教授     博士生导师   硕士生导师
    • 任职 : 统计与金融研究所所长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:数学科学学院
    • 学科:概率论与数理统计. 金融数学与保险精算
    • 办公地点:数学科学学院,π空间,512室

    访问量:

    开通时间:..

    最后更新时间:..

    Some Asymptotic Formulas for a Brownian Motion from The Maximum and Minimum Domains with Regular Varying Boundary

    点击次数:

    论文类型:期刊论文

    发表时间:2014-01-01

    发表刊物:COMMUNICATIONS IN STATISTICS-THEORY AND METHODS

    收录刊物:SCIE、EI

    卷号:43

    期号:18

    页面范围:3848-3865

    ISSN号:0361-0926

    关键字:Brownian motion; Exit probabilities; Gordon's inequality; Regular function

    摘要:Consider a Brownian motion starting at an interior point of the maximum or minimum domains with regular varying boundary, namely, D-max = {( x, y(1), y(2)) : parallel to x parallel to < max(i=1,2){f(i)(1 + y(i))}} and D-min = {(x, y(1), y(2)) : parallel to x parallel to < min(i=1,2){f(i) (1 + y(i))}}, in Rd+2, d >= 1, respectively, where parallel to.parallel to is the Euclidean norm in R-d, y(1), y(2) >= -1, and f(i) are regularly varying at infinity. Let tau(Dmax) and tau(Dmin) denote the first times the Brownian motion exits from D-max and D-min. Estimates with exact constants for the asymptotics of log P(tau(Dmax) > t) and log P(tau(Dmin) > t) are given as t -> infinity, depending on the relationship between f(1) and f(2), respectively. The proof methods are based on Gordon's inequality and early works of Li, Lifshits, and Shi in the single general domain case.