• 更多栏目

    鲁大伟

    • 教授     博士生导师   硕士生导师
    • 任职 : 统计与金融研究所所长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:数学科学学院
    • 学科:概率论与数理统计. 金融数学与保险精算
    • 办公地点:数学科学学院,π空间,512室

    访问量:

    开通时间:..

    最后更新时间:..

    The First Exit Time of a Brownian Motion from the Minimum and Maximum Parabolic Domains

    点击次数:

    论文类型:期刊论文

    发表时间:2011-12-01

    发表刊物:JOURNAL OF THEORETICAL PROBABILITY

    收录刊物:Scopus、SCIE

    卷号:24

    期号:4

    页面范围:1028-1043

    ISSN号:0894-9840

    关键字:Brownian motion; Bessel process; Gordon's inequality; Exit probabilities

    摘要:Consider a Brownian motion starting at an interior point of the minimum or maximum parabolic domains, namely, D(min) = {(x, y(1), y(2)) : ||x|| < min{(y(1) + 1)(1/p1), (y(2) + 1)(1/p2)}} and D(max) = {(x, y(1), y(2)) : ||x|| < max{(y(1) + 1)(1/p1), (y(2) + 1)(1/p2)}} in R(d+2), d >= 1, respectively, where ||.|| is the Euclidean norm in R(d), y(1), y(2) >= -1, and p(1), p(2) > 1. Let iota(Dmin) and iota(Dmax) denote the first times the Brownian motion exits from D(min) and D(max). Estimates with exact constants for the asymptotics of log P(iota(Dmin) > t) and log P(iota(Dmax) > t) are given as t -> infinity, depending on the relationship between p(1) and p(2), respectively. The proof methods are based on Gordon's inequality and early works of Li, Lifshits, and Shi in the single general parabolic domain case.