教授 博士生导师 硕士生导师
主要任职: 生物工程学院副院长
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 生物工程学院
学科: 生物化工. 膜科学与技术. 微生物学
联系方式: xue.1@dlut.edu.cn
电子邮箱: xue.1@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2014-02-15
发表刊物: BIOCHEMICAL ENGINEERING JOURNAL
收录刊物: SCIE、EI、Scopus
卷号: 83
页面范围: 55-61
ISSN号: 1369-703X
关键字: Fermentation; Fed-batch culture; Separation; Bioprocess design; Gas stripping; Butanol production
摘要: Two-stage gas stripping coupled with acetone-butanol-ethanol fermentation in a fibrous bed bioreactor was established for energy-efficient butanol recovery. The impacts of process parameters including butanol concentration, temperature and cell density with feed, gas flow rate, and cooling temperature on the efficiency of the gas stripping system were studied. High butanol concentration, low cell density and cooling temperature increased butanol titer in the condensate. The butanol titer in the condensate increased when stripping temperature increased from 25 to 55 C, and decreased when temperature was above 55 C. The optimal gas flow rate was 1.6 L/min, above which more water was stripped off and the condensate was diluted. After process optimization, 48.5 g/L butanol (73.3 g/L ABE) was produced in the fed-batch fermentation with in situ gas stripping due to the reduced butanol inhibition on cells. The condensate containing 147.2 g/L butanol (199.0 g/L ABE) was produced by the first-stage gas stripping, while a highly concentrated condensate containing 515.3 g/L butanol (671.1 g/L ABE) was obtained from the second-stage gas stripping. This process can significantly reduce energy consumption in the final product recovery. (C) 2013 Elsevier B.V. All rights reserved.