张维萍

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中科院大连化学物理研究所

学位:博士

所在单位:化工学院

学科:工业催化. 能源化工

办公地点:西部校区化工实验楼B-323

联系方式:0411-84986326

电子邮箱:wpzhang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Designed synthesis of nitrogen-rich carbon wrapped Sn nanoparticles hybrid anode via in-situ growth of crystalline ZIF-8 on a binary metal oxide

点击次数:

论文类型:期刊论文

发表时间:2016-01-01

发表刊物:NANO ENERGY

收录刊物:SCIE、EI

卷号:19

页面范围:486-494

ISSN号:2211-2855

关键字:Lithium-ion batteries; Metal-organic frameworks; Tin anode; Nitrogen doping

摘要:We have established a novel and solvent-free synthesis of superior performance Sn/C anode derived from binary metal oxides which initiated the outward growth of ZIF-8 approach. The obtained anode has highly dispersed Sn nanoparticles wrapped in nitrogen-rich carbon with a 3D continuous conductive framework and a high Sn content of 82.3 wt% Binary metal oxide (ZnSnO3) is chosen together with imidazole to direct ZIF-8 growing around tin oxides according to the theory of hard and soft acids and bases. This ensures an encapsulation of tin oxides with high dispersion into ZIF-8. Subsequent pyrolysis allows the outward growth of ZIF-8 convert into a continuous and nitrogen-rich (5.3 wt%) carbon network with good conductivity. Meanwhile, tin oxides are reduced to Sn nanoparticles by carbothermal reduction and the reduced zinc consequently evaporates to create open pores which contribute to fast transportation of lithium-ions and electrons. Consequently, the Sn/C anode presents an initial discharge capacity of 1321 mA h g(-1) with superior coulombic efficiency of 80.1% at 0.2 A g(-1). Reversible capacities of 901 mA h g(-1) at 0.2 A g(-1) and 690 mA h g(-1) at 1 A g(-1) are reserved after 150 cycles. Importantly, this designed synthesis suggests a new approach to produce other materials such as MnO/C anode exhibiting good performance. (C) 2015 Elsevier Ltd. All rights reserved.