个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 日本东北大学金属材料研究所 客座教授 日本城西国际 客座教授
性别:男
毕业院校:日本东北大学
学位:博士
所在单位:材料科学与工程学院
学科:材料学. 材料加工工程. 材料物理与化学
办公地点:大连理工大学材料学院
联系方式:0411-84706063 http://anam.dlut.edu.cn
电子邮箱:wzhang@dlut.edu.cn
Al0.5TiZrPdCuNi High-Entropy (H-E) Alloy Developed through Ti20Zr20Pd20Cu20Ni20 H-E Glassy Alloy Comprising Inter-Transition Metals
点击次数:
论文类型:期刊论文
发表时间:2013-05-01
发表刊物:MATERIALS TRANSACTIONS
收录刊物:SCIE、EI、Scopus
卷号:54
期号:5
页面范围:776-782
ISSN号:1345-9678
关键字:high-entropy alloy; metallic glass; mixing enthalpy; atomic size ratio; alloy design; body centered cubic phase; Laves phase
摘要:An Al0.5TiZrPdCuNi high-entropy (H-E) alloy with a bcc single phase was found through a Ti20Zr20Pd20Cu20Ni20 H-E glassy alloy designed based on equi-atomicity inherent to H-E alloys. The constituent elements and the composition of the Ti20Zr20Pd20Cu20Ni20 alloy were determined by regarding a binary Cu64Zr36 bulk metallic glass as Cu60Zr40 alloy and subsequent replacements of the Cu and Zr atoms with other late- and early-transition metals, respectively. The Ti20Zr20Pd20Cu20Ni20 alloy in a ribbon shape forms into a glassy single phase. The addition of 0.5Al to the Ti20Zr20Pd20Cu20Ni20 H-E glassy alloy resulted in forming a bcc single phase for a rod specimen with a diameter of 1.5 mm. The analysis revealed that the Al0.5TiZrPdCuNi H-E alloy is characterized by mixing enthalpy of -46.7 kJ.mol(-1) and Delta parameter of 8.8, which are considerably larger and negative for the former and larger for the latter against the conventional H-E alloys.